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1. INTRODUCTION

f Connected multi-body dynamics problems of all kinds have been
encountered since the invention of the wheel and its application to a moving
platform. The precise formulation of the equations of motion for more than two
connected bodies brought little attention, except for the compound pendulum,
until the space age, probably because techniques and means for the solution to
the equations for two bodies with more than one or two degrees of freedom were
generally unavailable or too unwieldy and impractical to use. In the last two
decades, tremendous advances have been made in both the formulation methods
and computer solution to multi-body/multi-degree of freedom problems. Today,
it is not uncommon to obtain computer solutions for multi-~body systems
including flexible modes with more than twenty degrees of freedom or more than
fifty state variables. Even so, such computer programs evolve to usefulness

. only after the problem equations formulation, computer coding of the

{ [ equations, and debugging of the problem. The general effectiveness of the

) resulting multi-body dynamics and control simulation is usually assessed in

terms of the formulation and coding and debugging effort, the computer run

time, the ease of an analyst to become familiar with the program after it has
been developed, and the ease of modifying the program to reflect changes and
additions to the design of the system. With these ideas in mind, the multi-
body dynamics formulation for a spaceborne gimbal system was undertaken anew.

]
‘ : *
: : The approach initially favored was one wherein the "primitive"(l)

Newtonian/Eulerian equations for translational and rotational motion are
3 ‘ retained throughout. This would have required retention of all 6 degrees of
freedom for each body and the necessity of integrating more state variable

equations than are actually needed. Because computer run time is roughly

proportional to the number of state variables and to the highest frequency

A A
-

. *we use Jerkovsky's definfition: By "primitive" equations and variables, we
mean equations and variables that refer to each body as a separate and dis-
tinct body without regard to how it fits into the multi-body configuration.

‘m”;ﬁ-
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mode in the system, we can reduce run time considerably by reducing the
degrees of freedom of each body to 3 by not solving the translational
equations of motion by integration. However, holonomic constraint equations,
which are essentially algebraic, that constrain the gimbal geometry to con-
serve translational momentum of the gimbal system, have been introduced in
this paper which supplant the translational differential equations of

motion. This is basically the approach initially taken by Russell(z) in his.
so-called “"primed momentum” formulation method. We are then left with 3 °
rotational degrees of freedom for each body which are permitted for each axis
of a Cartesian coordinate frame associated with that body. The Cartesian
reference frames are retained from the beginning in order to permit insight,
visibility, and a feel for what is dynamically happening throughout the
formulation and simulation. Generalized coordinates formulations such as are
used in Lagrange, D'Alembert, Hamilton Boltzmann-Hamel, Gibbs, and Kane(3)
derivations of the equations of motion are avoided on purpose as is the
transformation operator formalism of Jerkovsky.(l’a) This is because a)
insight seems to get lost, and b) either hand reduction by matrix inversion of
the constraint equations to reduce computer solution time is needed, or this
problem is left to the computer whereby run time suffers due to matrix
inversions that are performed in each integration step. These other
approaches admittedly have the potential of shorter computer run times than -
are obtained using a momentum formulation because they reduce the number of
degrees of freedom for each body to an absolute minimum, e.g., the equations
for a single bearing axis gimballed body only needs one degree of "free”
rotational freedom, the other two degrees of relative freedom being "hard”

constrained or completely nulled via constraint equations.

In the alternative approach taken here, relative motion about the
constrained motion aras of the Cartesian frames is permitted, but only
slightly. The small to infinitesimal relative motions allowed require
additional solutions of angular motions tranaverse to the bearing axis but we
eliminate the need for hand or computer solution of "hard” comstraint
equations which generally involve matrix inversions. An advantage obtained is
that the true transverse axis dynamics can be revealed and their effect on

S —




system stability evaluated. However, because gimbal bearing transverse axis
stiffnesses can be large, the highest associated eigenvalue frequency can be
considerably higher than the highest control loop component bandwidth thereby
requiring shortening of the integration step size merely to get the constraint
satisfied. This shortcoming can be alleviated after one ascertains that high
frequency mode instability is not a problem by artificially reducing
transverse axis stiffness or increasing transverse axis viscous friction in a
way that lowers the transverse axis characteristic frequency to the vicinity
of the control loop bandwidths.

The multi-body equations presented in this paper are derived for bodies
in an open chain tree(s) configuration typical of a spacecraft with two or
more gimballed elements. The rotational equations of motion of one of the
bodies are general for open chain tree configurations as are the translational
momentum constraint equations. The equations and matrix-scalar block diagrams
are given for an example 4-body system comprised of a 3 axis controlled
spacecraft, a single axis controlled solar array, and a 2-axis gimbal con-

trolled payload with a gimbal yoke that has mass and inertia.
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2. GIMBALLED BODY MOMENTUM

Referring to Figure 1, we imagine the gimballed body with a mass element
dm at i relative to an inertial frame I to be gimballed about one of the axes

of a frame G whose basis vectors are parallel to those of frame g at the c.m.

of the body. Frame g is displaced an amount ;1 from the frame G and both

frames are fixed in the body and therefore rotate with the body at its
inertial angular rate ©. Then the moment of momentum of this body about the

origin of the frame g, or in other words, about its center of mass 1s(5-8)

ﬁg-f;xﬁdm (1) i.
=j;x(§i+$xlf)dm (2)
ﬁg =[x x(® x r)dm - ii x [ rdm (3

The first term on the right side of (3) is fg . B where T 1is the

inertia dyadic or inertia matrix with respect to the frame g, and the integral
in the second term is equal to the gimballed body mass M times the radius
vector from the frame g to the c.m. which is the null vector and hence is
zero. Thus (3) is written as

i =T «0 (4)
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Figure 1. Model of the ith Body




3. EQUATIONS OF MOTION

The equation of translational motion for the gimballed body of Figure 1

is

v,

M F, - F (5)
R = Fg = Feyony

In the figure, we have assumed two gimbal points on the ith body. The
subscript i identifies the gimbal frame associated with that body and the

4 a interbody force and torque at that point, whereas the subscript (i = 1)
identifies the adjacent connected body and its associated gimbal that it
shares with the ith body and its interbody force and torque. The negative of
‘ the interbody force and torque acting on the (i - 1) body are felt by reaction
{ on the lth body.

L . The equation of rotational motion about the point g, or center of mass
{ of the body 15(5-8)
¥ » ¥ ;
T.-r, xF, =H 6
T Q Q 8 )
where
» > >
TT = Ti - T(i—l) (7)
F
and

>
r

v
v
~—~

a " Feeny) ®)

where the last expression has been introduced for convenience in simplifying
the form of the resulting equations. In the usual approach we would substi-
: tute appropriate combinations of (5) into (8) which process is lengthy and

' ' replete with terms. To show the general idea of the equation development, we

. fFurther simplify by introducing

11
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MR = F (9)

so that

T xF =r xMR (10)

> d .+ > s 3
Q" o Tl " ot T T X Mok ab
Employing (I1) in (6) we have
> »’ d .+ > > >
TT Hg + EE(rQ x MQRQ) rQ x MQRQ (12)

The vector derivatives indicated in (12) are relative to an inertial
reference. In order to solve a vector differential equation computationally,
it nceds to be scalarized in a convenient frame of reference (see Appendix).
We wish to use the frame G in our computations and so we find the components
of the inertial vector derivatives of ﬁg and ;Q which have their bases in that
cotating frame. Using Appendix formula (A-15) and scalar component matrix

notation,

=H +w x1 (13)

ar_ _4+w X%Xr (14)

Because the position vectours in (8) are fixed in the body fixed frame

r 3 0.
G, ch .

The vectors ET and RQ may have been originally known and expressed in
terms of their components in an inertial frame I, however their components in
the G frame 4re straightforwardly obtained by transforming the vector

components from the {nertial frawe 1 to the gimbal frame G as required, e.g.,




P s SR

— G .

TTC EI TTI (15)
and

= sc. pay

QG CI RQI (16)

We now employ (13) and (14) in (12) to obtain the matrix-scalar equation

expressed in the G frame.

17)

where

because the frame ¢ is parallel to the frame G. Equation (7) can be written

as
TTG = HPG + wG x HPG - TQ (18)
where
HPG = ﬁG + HQ (19)
and
ﬁE"XM:ﬁ 20
0 ® o X Mofq (20
13

- , :
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and
T = (@xE) x MR 21 )
@ = (X Q) X MRy b
The quantity ﬁbc is defined as Russell's(2) “primed™ angular momentum,
which includes the momentum H. due to rotation about the center of mass plus a

G
term ﬁ§ resulting from the translational motion of the body center of mass due

to gimballing. The ﬁé term is referred to as the “swing”™ momentum.
The term TQ in (18) is a torque that is related to the acceleration

- b
fos) ™ Roc
torque and the time derivative of the swing momentum comprise the interbody

term (Eb x and is referred to as the "swing"” torque. The swing

torque, i.e., the net torque acting on the ith body due to motion of the

ensemble of bodies.

Equations (18) and (19) are the equations describing the angular motion .
of one of the gimballed bodies in a multi-body system. The solution to these

equations is depicted in block diagram form in Figure 2 where T&, Tb and ﬁé ,
are regarded as independent variable inputs in the figure and the computed

1

— L d - -
components wG of w in the gimbal frame G are the output. The inverse I8 of

the inertia matrix fg which i3 determined relative to the frame g is a physi-

c.:l parameter as are the mass M and the components of r. in the gimbal frame.

Q
Equations (18) and (19) further simplify to Familiar forms if ;Q =0 or if

iQ = 0 which makes the center of mass inertially fixed. The terms ﬁb gnd Té
»

generally will not be zero in a multi-body system and the presence of RQ which
is related to the gimballed mass velocity contributes in some cases very sig-

nificantly to the angular momentum of the body and therefore is very important
to consider. Its effect is amplified by the vector ;Q which is related to the

distance from the gimbal points to the center of mass of the body.
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4. FOUR BODY SYSTEM DYNAMICS

The translational equations of motion given by (5) are written out, for

example, for the four body chain configuration shown in Figure 3,

s >

MR, = F 22)
‘3 > >

MR, = F, - F (23)
g > > 4
M,R, = Fy = F, (24)

* °s >
MR, = -F, (25)

4.1 INTERBODY TORQUES

The interbody torques resulting from interbody forces are now

determined. It is easily seen that equations (8) and (5) or equations (22-25)

yield for the gth body in the chain




wa18Ag Apog-anoy +¢ 2an813




where
p,=r,. ~-r @n

Comparing (26) with corresponding terms in (17) and (18) it is apparent
that the first term in (26) is after scalarizing to the ith gimbal frame

-— — 2 - (1—1) =y =
HQi = ri x MiRi - pi x éEl Mka Rk (28)

where as in (20) we have defined the quantity ﬁb as the swing womentum term

(?§ x Mdﬁd ). 1In particular for the four body chain of Figure 3, using (28)

. we obtain,

- T E
Hyp = T ™ MR (29)
. =T, xMR, -5, xM & * X (30)
Q2 2 272 2 171 1

. o=T, X MR, - 5, x (M8 « Ko+ ME ﬁ') 31)

i Q3 3 373 3 171 1 272 2
or

i L4 3 *
! — — - - - = . —
: HQ3 r3 x M3R3 93 x M[‘C4 R4

HQ4 rA x M&“&

The second term in (26) is the swing torque

s (i~1) 5
r

! S T x MR - b, x5
| . o T[T MR TP & MR

i 19
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which becomes after scalarizing to the th gimbal frame,

~ L o (1-1)
Toa = Wy xE) X MR = (0 xp,)x 521

i

MkaRk (35)

For the four-body system of Figure 3, the swing torques on each body are

found to be

TQI = (@ xT) x MR (36)
= o~ - s a2
TQ2 = @, x r)) x MR, - (@, x p,) x M, * R (37)
T .= (@, x£y) x MR, - (@, x 6,) x M. 83 + K, + M. 8 « &) (38)

Q3 = (W3 X T3) X MaRy = (g X0y 15 "R PG R

or
— S - . -3 =
TQ3 Wy x r)) x MR, - (w0 x Py) X M,C, * R, (39)
Toa = @ 1) X MR, (40)

We can now proceed with the determination of t:he'ﬁ:l terms in (28) in

order to calculate the solution of equations (18) and (19) shown in Figure
2. 1In the material that follows, the subscripts denote the mass and gimbal
numbers. The subscript G has been suppressed and replaced merely with the
gimbal number i. The total torque Tr; on body i will be found to be comprised

gth gimbal elements (torque motor, bearing friction,

)th

of the torque from the

etc.) plus the reaction torque from the (i-1 gimbal elements.

4.2  MOMENTUM - KINEMATIC CONSTRAINTS

Figure 3 schematically shows several bodies connected together. A main
body 1is shown which could be the main part of a spacecraft which has a gimbal
system- that points a payload, e.g., the main body M3 could be the spacecraft,
M, 1its solar array, M) a gimbal, and M, the payload. The axes Gy and Gy would

20
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then be the payload gimbal axes and Gy the solar array gimbal axis. In the
. following analysis, the subscript number denotes the gimbal frame number and
the associated gimballed body number. Refer to the appendix for definitions

of vectors, scalars, matrix-scalar expressions and transformations.

It is obvious that the gimbal points move, i.e., the ﬁ change as the

gimballed bodies are articulated. We now proceed to find thgi§01.
The center of mass of the system is chosen as the origin of the
inertially fixed reference frame corresponding to the Xy Yy 2; frame in Figure
1. This restricts the analysis in this paper to the situation of no external
forces that would cause the system c.m. to undergo translational motion. Pure
moments about the system c.m. would be permissible. The definition of the

center of mass is employed; i.e.,

> Miii =0 (41)
i=1

If we differentiate (41) we get
4 3
pX MiRi =0 (42)
i=)

which is a statement of the conservation of translational momentum of the

system. Referring to Figure 3, the following vector relations are found:

* +
R1 = R

> >
Rz = R

> > +*
. R3 = R +r

R, =R, +7
. 4

21
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In general, for the chain configuration

R =R, +r 43
1t "1 Ty (43) .
Also, .
+> > »>
Roz * Rogr * ¢,
Ed _ > <>
Rosz = Rgy + P4
where

>
p2 = vector from G1 to Gy, etc.

so in general

* > +

Roi = Roqi-1) * Py (44)
or .
R, =R + E b (45)
0i 01 k=2 k
Equatfons (43) and (44) are depicted in Figures 1 and 3. Differentiating
(43), we get for the ith body
> 3 + > :
Ri = qu + wxr, (46)

An (;1 x ﬁOi ) term is not present because ROi vector is not based in the gth

body moving/rotating coordinate frame but rather is based in the inertial
frame centered at the system c.m. On the other hand, the ;1 vector is based

and fixed in the ith body frame so that its time derivative is identically ]

zero and the (ai x ;i ) term arises from the at angular rate of the 1th
body. Similarly, differentiating (44) and (45) we get

22




ORI

.
»> o

E%
x

>
Rot = Roci-1y * Py (47)
and
i % + x 48
ot PICHEE (48)
k=2
Substituting (48) into (46) and the result into (42) we obtain
° N N i
»> +* he
+ Y M@ xr)+ Y M X P =0 (49)
017 & 1t 0T & T
which can also be expressed as
ik +Eu(mxr)+§N: }E\a(&xz)-o (50)
0 i=1 i=2 \ k=1 k L L

The vectors in (50) should be expressed in terms of their compoments in the

same coordinate frame. Thus, we scalarize (50)

=1 —
Mﬁbl + 2 MlC1 (w, x ri) +
(51)
M s(w, x p.)=0
1-2<k-i ") t ot

where we have arbitrarily chosen the first body as the computational coordinate

>

23

frame and the transformation matrices E: are employed to transform the vectors
Wy, ;1 and 51 expressed in the tth body coordinates, back to the first body
coordinates. As an example, for 4~bodies In series (51) is used to find K

Pl . ) ' ~ .
RN ‘k;, - Shatl .




< _ - =] —
MRO1 - Ml(m1 x rl) + Mzc2 (m2 x rz)
+u @ xT)+ME e@ xT)
373 3 3 474 4 4
=] — —
+ (M, + M, + Ma)cz *(w, x pz)
=] — — (52)
+ (M3 + M4)C3 -(w3 x p3)
(The ai and SA terms are noted to be zero.) After ibl is computed, the
remaining §bi needed to complete the solution for the constraints are found
from (47). These R, are needed in the solution of the equations for momentum

(4} 1
and motion which are computationally performed in each of the gimballed bodies

respective coordinate frames and so they are scalarized in the 1th frame.

From (46), and (47) we obtain the scalarized result

p = i L] _._
B = T * Foc-n)

+a, x (31 + ?1) (53)
and from (46) and (48)

(54)

Equation (53) is obviously simpler than (54) and so it is the preferred method

of calculating the'R'i (i.e., In succession).




Figure 4 shows the block diagram representation for the solution of the

. ﬁi terms in equation (19) for the ith body angular momentum term ﬁéi using
equations (51) and (53). It is noted in Figure 3 that the 4th and last body

. is assumed to have the same reference gimbal point as the 3rd body so that
§04 = ibB' The first and last bodies in the chain in Figure 3 have only a

single gimbal point and so their values for'a1 are zero or undefined.

25




I’él

7 ¥
+ My + M,
M
—:i——
+ L =1
[' L 2R | Y
iR
RS LA e O
M, + M
3+ M
M
‘jl-‘
I’ 3 29 | G
| fe B,
| +T+

rigure 4.

Mowentum-Kinematic Constraints




5. ROTATTIONAL MOTION RESTRAINT EQUATIONS

The solution of the equations of motion of a single body in the ensemble
of bodies as depicted in Figure 2 can be carried out as previously noted using
equations (18), (19), (28), (35), (51) and (53) yielding the body angular
rates. The incremental angular motions that can be obtained by integration of
the body angular rates, accounting for kinematics, are those angular motions
about the gimballed ith body G; axes. Practically speaking, for gimbal motion
freedom, one axis is unrestrained in the sense that large relative angular
motion may occur (about the gimbal bearing axis) between the gimballed body
and the neighboring body to which it is attached. The other two body axis
motions relative to the attached body are restrained by the bearings to be
small or near zero. One approach in writing simulation equations is to éssume
these transverse gimbal axes motions to be zero. This requires that "hard"
constraint relations be solved algebraically in each integration step of the
simulation. The analytical determination of the hard constraint relations is
avoided in the approach taken here. Instead, the constraints for the bearing
transverse axes are lmplemented by feeding back reaction torques about these
axes that are proportional to small relative transverse axes angular
motions. 1In effect then, the constraint relations appear as restrajat glmpal
stiffnesses. In fact, the stiffnesses used in the simulation can be rfa
actual bearing transverse axes stiffnesses or perhaps the stitfnessce

associated with the lowest frequency modes of vibration about these axes.

One can take the point of view that the so-called unrestrained axis or
the bearing “"free"” axis 18 also restrained by the reaction and control torques
relations for that axis. These torques include, for example, motor
electromagnetic torque, motor cogging torque, motor magnetic hysteresis

torque, bearing and motor solid friction torque, and viscous friction torque.

With these notions then, the transverse axes motions that would be
oscillatory with stiffness feedback only, can also be dampened using realistic
structural damping relations. If the simulation is expected to give good

fidelity response data at the usually higher structural frequencies, the




damping introduced should be realistic. If the s{iulation 1s not expected to
provide high fidelity results except at frequencies well below the structural
frequencies, it is anticipated that high damping can be artificially intro-
duced for the bearing transverse axis modes. This will allow the use of
larger integration step sizes in a digital simulation and conmsequently will be
more economical in computer run time. The restrained body dynamics equations

are shown for the ith body in block diagram form in Figure 5.
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6. TFOUR BODY SFERVO SYSTEM EXAMPLE

6.1  GIMBALS/COORDINATES

. . An example of a multi-body gimbal servo system is illustrated in Figure
6. A block diagram of the “complete” dynamics equations for this example is

shown in Figure 7.

The first body 1s the pointed experiment payload of mass M; which has a
gimbal coordinate frame X{, Yy, Z; fixed in the payload with Z; along the
line-of-sight of the experiment, X, is the cross-track gimbal axis, and Yy
completes the triad. The center of mass of My is offset from the Gl gimbal

center an amount rl.

The second body with mass M, is the gimbal yoke. The yoke gimbal center
point G, is assumed to be midway between the cantilevered yoke bearings that
‘ provide free rotation of the yoke about the Yo axis. The yoke X, axis moves
f { with the yoke and is parallel to the experiment X, gimbal axis. The Z, axis
r . completes the yoke orthogonal frame. The center of mass of the yoke is offset

from the G, gimbal point an amount ?é.

The third body 1s the spacecraft and its gimbal frame G3 is arbitrarily
assigned to the same point as the solar array frame, Gy» i.e., it could also
have been assigned to the same point as the yoke frame point GZ' As shown in
: : Figures 4 and 6, the Gy and G, points colncide. The spacecraft Y5 axis 1is
parallel to the yoke Y2 axis and coincides with the solar array Y, axis. The
spacecraft X4 axis is fixed in the spacecraft parallel to one of its edges and
also nominally parallel tu the spacaecraft orbital velocity vector. The Z3
axis points in the direction of orbit nadir and completes the right handed
triad.

The solar array X, axis is parallel to an edge of the array which is

maintained normal to the sun line. The Z, axis completes the array frame G,
triad.
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6.2  CONSTRAINTS AND RESTRAINTS

The constraint relations in Figure 4 apply to this example and in effect
maintain the gimbal points geometry so that the distances between gimbals are

+*
maintained constant (e.g., Py = vector from g; to g8 = constant).

The "restraint” provisions that keep the angular rotation about the
gimbal transverse axis small are the realistic stiffnesses about the
experiment Y, and 2, axes, the yoke X2 and Z, axes, and the solar array X, and
2, axes. The stiffnesses enter into the equations of restrained motion; for
example, as Indicated in Figure 5 for the ith body, and Figure 8 for the
complete system, in the blocks labeled ﬁi which are 3 x 3 stiffness
matrices. The diagonal elements are the stiffnesses about the X,, Y,, Zj
axes. The off-diagonal elements are assumed to be negligible. Since the yoke

Yo axis is unrestrained except for solid friction, its stiffness 1s zero or

small compared to the X, and Z, stiffness elements in ﬁz' Data for the
stiffness elements can be obtained from design data or test data.

The other restraint provisions are applied somewhat realistically such
as viscous friction in all axes in the 32, 3 x 3, matrix in Figure 5. The
diagonal elements are the viscous friction coefficients operating on the X,,
Yz, 2y relative angular velocities. The off-diagonal terms are assumed negli-
gible. The controlled Y, axis viscous friction coefficient can be found from
test data. The X, aad Z, axis friction coefficients can be assigned values
that make the roots of the characteristic equation of the fz '1K2/82 +
12'152/8 loops taken together for the X, and Z, channels overdamped such that
the low frequency root is not much higher than the Y2 control bandwidth (say
for the rate control mode). If the undamped roots of the aforementioned
characteristic equation lie within the control bandwidth, then an attempt
should be made to use as realistic a friction model as posaible for the trans-
verse axes. Some viscous friction may be present for transverse axis motion
of the gimbal axis relative to the adjacent spacecraft body through the action
of lubrication as the viscous média. Perhaps a better choice of a model for
incorporating damping is to use a simplified solid friction mode1(9) that
results In realistic solid friction hysteretic damping. The model is an
integral function of the relative angular rate Aﬂz given by
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T
F
Tey =ﬁ3(1 - Fc—jl sgn szj)dt (55)

where TFj 1s the j axis component of solid friction torque that retards the
motion, oj is the solid friction model rest slope, and ch is the coulomb
friction torque level. Even though it is hysteretic, the model behaves like
viscous friction for medium amplitudes of angular oscillatory motion but the
behavior transitions to non-linear "structural damping” for very low ampli-
tudes of oscillation. Structural damping virtually disappears near zero

amplitude motion.

6.3 CONTROLLED AXES

The controlled gimbal axes are the experiment X; axis, the yoke Y, axis,

and the solar array Y, axis.
6.4  SENSORS

Rebalance rate gyros (in El and 32 of Figure 7) are mounted with input
axes along the X; and Y, axes and sense the inertial angular rates of the
experiment and yoke about these axes. Angle pickoffs (in 51 and FZ of Figure
7) are also mounted on these axes and measure the relative Euler angles

0;, 6%. A sun seansor (in 54) is mounted on the solar array and measures the
angle between the sun vector and the Y,Z, plane. An earth-sensor (in 53)
looks at the earth in the 24 direction and measures spacecraft pitch (about
Y3) and roll (about X3) attitude errors. The spacecraft attitude control
system also has rebalance rate gyros (in 63) and a star sensor mounted on the

spacecraft body (not shown in Figure 7).
6.5 ACTUATORS

The controlled gimbal axes are driven relative to the adjacent body by
reacting against the adjacent body with D.C. torque motors. The spacecraft
-primary attitude control mode during experiment gimballing utilizes reaction
wheels. The gimbal torque motor actuators are elements in the 61 and 52
blocks in Figure 7. The torque motor elements of 61 can be considered to be

LRE e e



Laplace transform transfer functions to account for dynamical effects of the
torque motors 1if necessary. The spacecraft reaction wheels (not their
housings) are actually additional bodies in the multi-body system and should
be modelled like the other hodies. However, a simplification is justified if
) the reaction wheel momentum is small enough that it does not cause significant
gyroscopic effects on the system. 1In this case, the reaction wheels can be
considered to be devices which apply torque to the spacecraft through the
dynamics of the wheel motor drive without the need to consider the effects of
wheel speed on the system momentum. The wheels as torque generating devices
are depicted in block 63 of Figure 7. The elements of the 63 matrix may be

dynamics transfer functions.
6.6 COMPENSATION

The blocks labelled Ep contain position coantrol loop compensation

transfer functions and the blocks labelled ER contain the rate control loop

compensation transfer functions. In the case of the experiment, the

] { ‘ ¢ and 9 pointing position commands as well as the o and mzy rate commands )
1 are generated external to the control loops. Switchover from position to rate -

control is done to provide better tracking performance because of lower noise
and higher loop bandwidth ugsing the rate loop only. The usual proportional ]
plus integral or proportional plus rate compensation is employed in the

various compensators. The simplified diagram in Figure 7, for example, shows

the solar array control without gyros or tachometer feedback and so

proportional plus rate type compensation is used for this control loop. 7




The equations of motion of a multi-body gimbal servo system for

simulation purposes were derived using a simplistic gimballed body momentum
formulation that was maintained throughout, thereby retaining the original
variables defined in the beginning of the model formulation. The avoidance of
unnecessary algebraic manipulation and the introduction of new variables
through transformation of the original variables is seen as a simplification
in evolving and understanding a complex computer simulation model that can be
debugged and run with enhanced insight to the physical process being

simulated.

One of the features that helped in this goal was the choice of writing
the equations of rotational motion in the body fixed coordinates of the
gimballed bodies. The result ig the simple body rotational dynamics equation
diagram of Figure 2. The r x MﬁQ moment of momentum term that is added to the
body rotational angular momentum is determined algebraically by evaluating the
gimbal interbody forces and utilizing conservation of translational momentum
in order to avoid solution of the translational dynamics. Although somewhat
involved, this process seems to evolve to solutions that are straightforward

as indicated by Figure 4.

The equations of rotational motion are expressed in the gimballed body
coordinates and thereby require fairly extensive transformation of angular
rates and torques from adjacent bodies, but this is true of other formulation
approaches. When a generalized coordinate approach to formulation is taken,
the coordinate transformations are hidden or essentially replaced by velocity

and momentum transformations. Thus, in this regard, there appears to be no

great disadvantage in the approach taken in this paper. However, there seems
to be an advantage in keeping the avenues of insight open by retaining the
original coordinate transformations throughout.

The equations necessary for the simulation of a 4~body system were
presented in matrix-scalar block diagram form in Figures 4 and 7. The

elements of the 3 x 3 matrices or dyadics need to be defined whereby it will

kY




be found that many are zero and many are Laplace transform transfer
functions. The component scalar equations are too detailed to devote

additional attention in this report.
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APPENDIX A

1. SCALARIZING

The vector equations in this paper are used in vector-dyadic form until
the need arises to scalarize into matrix-scalar forms. For computer time
history simulations, we need the matrix-scalar form as an end product to work
from and the block diagrams used herein are in that form. In scalarizing, the

->
assumption 1s made that a vector R can be written in terms of its components
along some bases ka,‘ﬁky,'aAz. In vector form,
+>

-_— A
R=Ru =R

4 +RrR T 2
AA AX Ax

Ray®ay ¥ Raztaz (4-1)

Then alternatively in matrix-vector form

> - A A A T _
. R, {RA} L RAy, RAZ]{qu, Upy ?Az} (A-2)

- A\
= [RA]{uA} (A-3)

o
RAqux

~
RAy Ay . (A-4)

e

>

R

=

Az Az

or in terms of its scalar components in frame A the matrix-scalar form 1is

AX

= [R,] =IR (A-5)

RA Ay

Az
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B ——

The idea of a matrix such as the component matrix [RA] operating on ¢ vector
|Ga{ producing a "transformed” vector Ry is applied to coordinate

transformations where a rotation matrix [C:] operating on a vector

say §A produces a vector §B° In "matrix vector” form, .
1 B -
{sg} = [c,] {sA} (A-6)
or
A A - - - At - "4
SaxYBx s SaxYax
A B A
SByuBy [cA] sAyuAy (A-7)
s . ls 0
Bz Bz Az'Az

and in matrix-scalar form

. 1
{ o I
(sg) = [C,] [S,) (A-8)
or
3. =M% : (A-9)
B A A '
or
SBx SAx
B )
SBy = [CA] SAy (A-10)
SBz SAz

The vector dyadic form

g -8 .38 (A-11)




is represented in matrix scalar form as

5 =8.3 (A-12)

where the dyadic and matrix E: are equivalent.

The vector ﬁ in (A-1) and (A-3) did not have to be identified with
respect to a coordinate frame until its components needed to be known, at
which time its bases ka, GAY' ﬁkz have to be specified. In the case of the
coordinate transformation, (A-6), the bases of $ were presumably known to be
in frame A before the transformation matrix or dyadic E: could be generated to
produce that vector's components in the B frame. In this sense, the "matrix
vector” form is already in a scalarized form by identifying the A and B frame

] ‘ bases vectors.
2. DERIVATIVES

If a vector derivative operation is required in a fixed inertial frame

] [ . with bases Uaxs Upys Upzs the components of ﬁ are identified from

T+
Ay“Ay

s A
RAzqu (A-13)

|»

¢ A °
e +R

ATA = RAqux

3
R =

]

wherein the scalar components are seen to be

. Ry = |Ray (A-14)

If the components of a vector derivative of § are known in a frame B

rotating at an inertial angular rate » with respect to an inertial frame A,

. the components of the vector derivative in the inertial frame can be found
i - from the vector formuila
é 1;’+’x.’
. A g v o
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They are the corresponding quantities of the matrix scalar equation,

R, =R + @ xR (A-16) 1'

where the symbols wx denotes a 3 X 3 skew-symmetric matrix operator that

operates on the 1 % 3 column matrix Eﬁ i.e.,

0 -mhz mBy ’

wg X7 | Wg, O ~“Bx (4-17)
-why me 0

Sometimes the components of a vector derivative ﬁ (or any vector for that

matter) are known in an inertial frame A and it is desired to determine its

components in another frame B which may be rotating or not. Here, the -
components of R in the frame B are [see (A-12)] .
R -7 (A-18)
B A A

It perhaps should be pointed out that o in (A-15) is the inertial angular
velocity of the B frame whose components, if need be, can be transformed via
formula (A-12)

w =C ' *w (A-19)

All of the vectors on the right side of (12) are thereby scalarized in (17) to
the same reference frame. Note that if there is more than one subscript to a
scalar 1 x 3 matrix, the last subscript denotes the reference frame,

e.8., 353 indicates the scalar components of 32 are in frame 3,
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3. TRANSFORMATIONS

The transformation matrix [C:] or dyadic EB can be a gingle or multiple

A
e axis Euler angle transformation. Here, for single Euler angle rotation
transformations,
1 0 0
B
(6,1 =0 cé Se¢f, (A-20)
0 -s¢ C¢ .

. c6 o ~s6
e1=]o 1 o |, (a-21)
. s9 0 co

is a © rotation about Y, axis in the sequence to get to B frame, and

cv sv 0
(31 = -sv cv of, (A-22) i
0 0 1

is a ¥ rotation about Z, axis in the sequence to get to the B frame, where Xa»

Y., Z, are the axes of the G, frame. If a gimbal axis set, through which

gimbal Euler angles occur, has zero or negligible mass and inertia, and are

intersecting, then the transformation (19) can be taken as the product of

¢ successive rotational transformations of the massless gimbal set. For
example, if the massless gimbal set order of rotation is, first about Xy




second about Y,, and third about Z,, then to get from the G, frame to the Gy
gimbal frame,

2B 3B _wB =B - .
¢, = EA ﬁA 3A (A-23)

In the usual case where a gimbal has appreciable or finite mass, and a single
bearing axis is employed which may be non~intersecting with other gimbals,
then that gimbal should be considered as a separate body and a single angle
rotation (about the gimbal axis) transformation is deemed adequate. However,
strictly speaking, the small angle rotations about the axes transverse to the
bearing axis which can be considered co-centered should be included in the

general 3-axis case as in Equation (A-23).

4. ATTITUDE KINEMATICS

The gimbal or body angles or parameters that characterize the attitude
of the body are computationally obtained from kinematics rate equations. In

the case of Euler angles that are used in this paper they are obtained by

integration of kinematic rate equations typically of the form .
3 , S89se $0Ce"~ w
co ch X
8| = |0 co -S4 g (A-24)
M Sé Cé
0 @ co Yz

Where the order of Euler angle rotation here is yaw-pitch-roll (i.e., 18t
about Z, 2™ about Y, 3% about X). The coefficient matrix is non-orthogonal
for Euler angle transformations and possesses singularities. The singularity
condition is avoided for small angle rotations transverse to the gimbal axis
if the first rotation in the sequence is taken to bhe the gimbal bearing

axis. Also, the coefficient matrix is then independent of the bearing axis
Euler angle. Thus, if small angle approximations for pitch, 8, and




roll, 4, are used, which represents the small angular deflections transverse

to the bearing Z axls, we get for the above example,

©
—
o
<D

—d
>ﬁ

De
L]
>
—
|
b
4

(A-25)

<o

where, again, it is seen that the coefficient matrix does not contain the

bearing axis rotation angle, V.

It may easily be ascertained that the small angle approximation for the
coefficient matrix is not unique and independent of the order of the last two
rotations, i.e., pitch-roll vs. roll-pitch. This observation and the
assumption that the transverse axis rotations will be truly small and
oscillatory, are motivations for setting the small angles in the coefficient
matrix to zero. The coefficient matrix is then seen to be the identity

matrix.

The spacecraft attitude errors are obtained in a similar fashion,
however the attitude errors are referenced to the local orbit frame. Thus,
the attitude kinematic rate equations are of the form of equation (A-24)

except the rate error vector on the right side of equation (A-24) 1is
B=T, -8 % (A-26)
3 00

which is reflected in Figure 7 as the spacecraft attitude error rate.







